Ptasiewicz-Bak, h., McIntyre, G. J. \& Olovsson, I. (1983). Acta Cryst. C39, 966-968.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Stadnicka, K., Glazer, A. M. \& Koralewski, M. (1987). Acta Cryst. B43, 319-325.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Bis[bis(pentamethylcyclopentadienyl)ytterbium(III)] Ditelluride

By Allan Zalkin and David J. Berg
Molecular and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA

(Received 11 February 1988; accepted 12 April 1988)

Abstract

Yb}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}\right]_{2} \mathrm{Te}_{2}, \quad \mathrm{C}_{40} \mathrm{H}_{60} \mathrm{Te}_{2} \mathrm{Yb}_{2}, \quad M_{r}=\) 1142.20, monoclinic, $P 2_{1} / n, \quad a=15.517$ (3), $\quad b=$ 10.611 (2), $c=13.166$ (3) $\AA, \quad \beta=114.34$ (2) ${ }^{\circ}, \quad V=$ $1975.1 \AA^{3}, \quad Z=2, \quad D_{x}=1.92 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.71073 \AA, \quad \mu=61.71 \mathrm{~cm}^{-1}, \quad F(000)=1088, \quad T=$ $296 \mathrm{~K}, R=0.036$ for $3330\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$ of 4560 total unique data. The Te_{2}^{2-} ion is on a center of symmetry and lies perpendicular to and between the two Yb atoms. Each Yb atom is bonded approximately tetrahedrally to two cyclopentadienyl ring centers and the Te_{2}^{2-} ion. Distances (\AA) are: ave. $\mathrm{Yb}-\mathrm{C} 2.626$ (17), ave. $\quad \mathrm{Yb}-\mathrm{Cp}$ (centroid) $\quad 2.332(18), \quad \mathrm{Te}-\mathrm{Te}$ 2.7686 (11) \AA.

Experimental. The complex was isolated from the reaction of $\left[\mathrm{Yb}\left\{\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right\}_{2}\right] .\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ with a large excess of tellurium powder in hexane after stirring for 2 days at room temperature. Black air-sensitive crystals were sealed inside quartz capillaries under argon. Crystal, $0.25 \times 0.25 \times 0.33 \mathrm{~mm}$, with eight faces; modified Picker automatic diffractometer, graphite monochromator; cell dimensions from 28 reflections, $20<2 \theta<54^{\circ}$; analytical absorption correction, range 2.4-3.8; max. $(\sin \theta / \lambda)=0.65 \AA^{-1} ; h-20$ to $20, k 0$ to $13, l-17$ to 17 ; three standard reflections, average decay 0.8%, intensities adjusted accordingly; 8993 data, 4560 unique, $R_{\text {int }}=0.023$; structure solved by Patterson and Fourier methods; refined on F, f^{\prime} and $f^{\prime \prime}$ terms included, 199 parameters; H atoms not observed in difference maps and were not included; anisotropic thermal parameters for all atoms refined; $R=0.036$ for 3330 reflections for which $F^{2}>2 \sigma\left(F^{2}\right) ; R=0.055$ all data; $\quad w R=0.052 ; \quad S=1.38 ; \quad w=4 F_{o} /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\right.$ $\left(0.06 F_{o}^{2}\right)^{2}$]; max. (shift $/ \sigma$) <0.05; extinction correction $F_{\text {corf }}=\left(1+4.8 \times 10^{-8}\right) F_{o}, \quad$ extinction parameter estimated after each series of refinements, max. correction 11%; max. and min. of ΔF synthesis 1.6 and $-1.4 \mathrm{e} \AA^{-3}$; atomic f, f^{\prime} and $f^{\prime \prime}$ for neutral Yb, Te and C from International Tables for X-ray Crystallography
(1974); local unpublished programs and ORTEP (Johnson, 1965).
Atomic parameters are listed in Table 1, and distances and angles are listed in Table 2.* Fig. 1 shows the molecule and numbering scheme.

Related literature. Comparable $\mathrm{Te}-\mathrm{Te}$ distances are $2.78 \AA$ in $\mathrm{AuTe}_{2} X, X=\mathrm{Cl}$ or I (Haendler, Mootz, Rabenau \& Rosenstein, 1974), and 2.802 (1) \AA in $\left.\left[\mathrm{Ni}\left\{\mathrm{CH}_{3} \mathrm{C}^{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{3}\right\}\right]_{2}\left[\mu\right.$ - $\left.\mathrm{Te}_{2}\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ (DiVaira, Peruzzini \& Stoppioni, 1986). The latter is the only structurally characterized compound with the same

[^0]Table 1. Atomic parameters

$B_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} \boldsymbol{B}_{i j} a_{l}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Yb	0.16540 (2)	0.07854 (3)	-0.02377 (2)	2.656 (9)
Te	0.05403 (3)	-0.07689 (4)	0.08828 (4)	3.43 (2)
C1	0.1697 (6)	0.2522 (7)	0.1192 (7)	3.7 (2)
C2	0.1706 (5)	0.3167 (6)	0.0264 (7)	3.6 (2)
C3	0.2584 (6)	0.2928 (7)	0.0192 (7)	4.1 (3)
C4	0.3112 (6)	0.2094 (7)	0.1103 (8)	4.4 (3)
C5	0.2554 (6)	0.1844 (7)	0.1702 (7)	4.2 (3)
C6	0.1835 (5)	0.0476 (7)	-0.2110 (6)	3.5 (2)
C7	0.2764 (5)	0.0245 (8)	-0.1270 (6)	3.5 (2)
C8	0.2717 (6)	-0.0846 (7)	-0.0692 (7)	3.7 (2)
C9	0.1786 (6)	-0.1345 (7)	-0.1208 (7)	3.8 (3)
C10	0.1232 (5)	-0.0508 (7)	-0.2093 (6)	3.5 (2)
C11	0.0950 (8)	0.2726 (10)	0.1658 (10)	6.3 (4)
C12	0.0970 (9)	0.4095 (8)	-0.0467 (10)	6.7 (4)
C13	0.2962 (10)	0.3655 (10)	-0.0528 (12)	7.8 (6)
C14	0.4163 (7)	0.1799 (12)	0.1501 (12)	8.1 (5)
C15	0.2877 (10)	0.1090 (11)	0.2775 (9)	7.0 (5)
C16	0.1544 (7)	0.1523 (9)	-0.2991 (8)	5.1 (3)
C17	0.3649 (7)	0.0846 (9)	-0.1232 (9)	5.5 (4)
C18	0.3546 (7)	-0.1478 (10)	0.0237 (7)	5.5 (3)
C19	0.1504 (7)	-0.2631 (7)	-0.0948 (9)	5.1 (4)
C20	0.0263 (6)	-0.0778 (9)	-0.2988 (7)	4.8 (3)

[^1]Table 2. Selected distances (\AA) and angles (${ }^{\circ}$)
$\mathrm{Cp1}$ and Cp 2 represent the centroids of cyclopentadienyl atoms C1-C5 and C6-C10 respectively.

$\mathrm{Cpl}-\mathrm{Yb}$	2.319	$\mathrm{Te}-\mathrm{Yb}-\mathrm{Cpl}$	107.67
$\mathrm{Cp} 2-\mathrm{Yb}$	2.344	$\mathrm{Te}-\mathrm{Yb}-\mathrm{Cp} 2$	113.83
$\mathrm{Cl}-\mathrm{Yb}$	$2.616(7)$	$\mathrm{Te}-\mathrm{Yb}-\mathrm{Cpl}$	109.31
$\mathrm{C} 2-\mathrm{Yb}$	$2.605(7)$	$\mathrm{Te}-\mathrm{Yb}-\mathrm{Cp} 2$	112.59
$\mathrm{C} 3-\mathrm{Yb}$	$2.627(7)$	$\mathrm{Cpl}-\mathrm{Yb}-\mathrm{Cp} 2$	133.32
$\mathrm{C} 4-\mathrm{Yb}$	$2.621(8)$	$\mathrm{Te}-\mathrm{Yb}-\mathrm{Te}$	$52.04(2)$
$\mathrm{C} 5-\mathrm{Yb}$	$2.607(8)$	$\mathrm{Yb}-\mathrm{Te}-\mathrm{Yb}$	$127.96(2)$
$\mathrm{C} 6-\mathrm{Yb}$	$2.614(7)$	$\mathrm{Yb}-\mathrm{Te}-\mathrm{Te}$	$63.82(2)$
$\mathrm{C} 7-\mathrm{Yb}$	$2.659(7)$	$\mathrm{Yb}-\mathrm{Te}-\mathrm{Te}$	$64.14(2)$
$\mathrm{C} 8-\mathrm{Yb}$	$2.625(7)$		
$\mathrm{C} 9-\mathrm{Yb}$	$2.646(7)$		
$\mathrm{C} 10-\mathrm{Yb}$	$2.638(7)$		
$\mathrm{Te}-\mathrm{Yb}$	$3.1513(9)$		
$\mathrm{Te}-\mathrm{Yb}$	$3.1598(7)$		
$\mathrm{Te}-\mathrm{Te}$	$2.7686(11)$		

geometry for the Te_{2} unit as that found in the present work. A comparable distance for $\mathrm{Yb}-\mathrm{Cp}$ is $2.347(2) \AA$ in $\left[\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)\left(\mathrm{NH}_{3}\right)\right]$ (Zalkin, Henley \& Andersen, 1987).

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract No. DE-AC03-76SF00098.

Fig. 1. ORTEP (Johnson, 1965) drawing of molecule; 50% probability ellipsoids.

References

Di Vaira, M., Peruzzini, M. \& Stoppioni, P. (1986). J. Chem. Soc. Chem. Commun. p. 374.
Haendler, H. M., Mootz, D., Rabenau, A. \& Rosenstein, G. (1974). J. Solid State Chem. 10, 175-181.

International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2, pp. 71-102. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Zalkin, A., Henly, T. J. \& Andersen, R. A. (1987). Acta Cryst. C43, 233-236.

Acta Cryst. (1988). C44, 1489-1490

Structure of Tris(\boldsymbol{N}-tert-butylformamide)dichlorodioxouranium(VI)

By P. Charpin, M. Lance, M. Nierlich, D. Vigner and H. Marquet-Ellis
CEA CEN/SACLAY IRDI/DESICP/DPC/SCM-CNRS-UA 331, 91191 Gif sur Yvette CEDEX, France

(Received 12 November 1987; accepted 5 April 1988)

Abstract

UO}_{2} \mathrm{Cl}_{2}\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNHCHO}\right\}_{3}\right], M_{r}=644.38\), orthorhombic, $P b c a, a=12.793$ (3), $b=18.306$ (6), $c=21.275(5) \AA, \quad V=4983(4) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.718 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \quad \mu=$ $6.42 \mathrm{~mm}^{-1}, F(000)=2480, T=295 \mathrm{~K}, R=0.041$ for 1033 unique observed data. The structure is of molecular type. The stereochemistry about the U atom adopts a pentagonal bipyramidal geometry, common in five-coordinate dioxouranium(VI) complexes with the linear UO_{2}^{2+} axial. The equatorial pentagon is planar (all five atoms are less than $0.2 \AA$ out of the plane) but is not quite regular owing to the presence of two large Cl atoms at 2.779 (5) and 2.719 (6) \AA and three O atoms at 2.44 (1), 2.39 (1) and 2.38 (1) \AA.

Experimental. Crystals formed on leaving $\mathrm{UCl}_{4}-\mathrm{N}$ -tert-butylformamide solutions for several days; crystal

0108-2701/88/081489-02\$03.00
$0.25 \times 0.2 \times 0.1 \mathrm{~mm}$; Enraf-Nonius CAD-4 diffractometer, graphite-monochromatized Mo $K \alpha$ radiation; $\omega / 2 \theta$ scan technique; cell parameters obtained from least-squares procedure on 25 reflections ($8<$ $\theta<12^{\circ}$); decay of 7.7% (in 25.3 h) in intensities of three standard reffections monitored every 100 measurements, linearly corrected; Lorentz and polarization corrections; empirical absorption correction based on ψ scans (North, Phillips \& Mathews, 1968), min. transmission $0.60 ; 2654$ reflections collected, 2316 unique, 1033 with $I>3 \sigma(I) ; 3<2 \theta<40^{\circ}$; $0 \leq h \leq 12,0 \leq k \leq 17,0 \leq l \leq 20$; structure solved by the heavy-atom method and refined by full-matrix least squares on F; anisotropic thermal parameters for U and Cl ; scattering factors including anomalous-dispersion terms from International Tables for X-ray Crystallography (1974); H atoms introduced at calculated

[^0]: * Lists of structure factors, anisotropic thermal parameters, additional distances and angles, and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44931 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: © 1988 International Union of Crystallography

